Dr. Xavier Comas

Xavier Comas, Ph.D.

Associate Professor

Email xcomas@fau.edu
Phone (954) 236-1569
Office SE 460, DW 330                        Environmental Geophysics Lab webpage


Ph.D. Rutgers University, 2005
B.Sc., Universitat de Barcelona (Spain), 2000

Research Interests

Hydrogeophysics: use of Ground Penetrating Radar (GPR), terrain conductivity, electrical resistivity and induced polarization (IP) for environmental applications with emphasis in wetlands and karst environments

Peatland Geophysics: subsurface imaging of peat sediments and implications for peatland development and evolution. Carbon cycling studies in peat soils: quantification of carbon stocks and biogenic gas dynamics in peat soils, from tropical to boreal peatlands.  

Karst Geophysics: imaging of dissolution features and sinkhole distribution in karst environments. Formation and evolution of karst landforms.
Electromagnetic, electrical and hydrological properties of organic sediments and limestone: electrical properties of peat; hydraulic measurements in organic sediments, methane quantification and genesis in peat soils; characterization of physical properties of limestone.


GLYC6934 Environmental Geophysics
GLYC6934 Ground Penetrating Radar
GLYC6934 Wetlands Geosciences
GLYC4451 Solid Earth Geophysics
GLYC4700 Geomorphology
GLYC4400 Structural Geology



  1. Comas, X.; Terry, N.; Hribljan, J.; Lilleskov, E. A.; Suarez, E.; Chimner, R. A.; and Kolka, R. K. 2017. Estimating belowground carbon stocks in peatlands of the Ecuadorian páramo using ground penetrating radar (GPR). Journal of Geophysical Research-Biogeosciences ,122, doi:10.1002/2016JG003550.
  2. Fabregat, I., Gutierrez, F., Roqué, C., Comas, X., Zarroca, M., Carbonel Portero, D., Guerrero, J., and Linares, R. 2017. Reconstructing the internal structure and long-term evolution of hazardous sinkholes combining trenching, electrical resistivity imaging (ERI) and ground penetrating radar (GPR). Geomorphology, 285, 287–304.
  3. Zarroca, M., Comas, X., Gutiérrez, F., Carbonel, D., Linares, R., Roqué, C., Morteza Mozafari, M., Mir, X., Guerrero, J. 2016. The application of GPR and ERI in combination with exposure logging and retrodeformation analysis to characterize sinkholes and reconstruct their impact on fluvial sedimentation. Gállego Valley, NE Spain. Earth Surface Processes and Landforms, doi: 10.1002/esp.4069.
  4. Wright*, W., and X. Comas. 2016. Estimating methane gas production in peat soils of the Florida Everglades using hydrogeophysical methods, Journal of Geophysical Research: Biogeosciences, 121(4), 2015JG003246.
  5. Orlando, J., X. Comas, S. A. Hynek, H. L. Buss, and S. L. Brantley, 2016. Architecture of the deep critical zone in the Río Icacos watershed (Luquillo Critical Zone Observatory, Puerto Rico) inferred from drilling and ground penetrating radar (GPR), Earth Surface Processes and Landforms. 41(13), 1826-1840, doi: 10.1002/esp.3948
  6. Terry*, N., L. Slater, X. Comas, A. S. Reeve, K. V. R. Schäfer, and Z. Yu, 2016. Free phase gas processes in a northern peatland inferred from autonomous field-scale resistivity imaging, Water Resources Research., 52, 2996–3018, doi:10.1002/2015WR018111.
  7. Pellicer, M., X., Corella, J. P., Gutiérrez, F.,  Roqué, C., Linares, R., Carbonel, D., Zarroca, M.,  Guerrero, J.,  Comas, X. 2016. Sedimentological and paleohydrological characterization of Late Pleistocene and Holocene tufa mound paleolakes using trenching methods in the Spanish Pyrenees. Sedimentology . 63: 1786-1819. doi: 10.1111/sed.12290.
  8. Mount*, G., Comas, X., Wright*, W. and McClellan*, M. 2015. Delineation of macroporous zones in the unsaturated portion of the Miami Limestone using ground penetrating radar, Miami Dade County, Florida. Journal of Hydrology , 527, 872-883.
  9. Comas X., Terry N., Slater L., Warren M., Kolka R., Kristijono A., Sudiana N., Nurjaman D., Taryono Darusman.2015.Imaging tropical peatlands in Indonesia using ground penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization. Biogeosciences , 12, 2995-3007, doi: 10.5194/bg-12-2995-2015
  10. Mount*, G. and Comas, X. 2014. Estimating porosity and solid dielectric permittivity in the Miami Limestone using high frequency ground penetrating radar measurements at the laboratory scale. Water Resources Research, 50 (10), 7590-7605, doi: 10.1002/2013WR014947.
  11. Comas, X. and Wright*, W. 2014. Investigating carbon flux variability in subtropical peat soils of the Everglades using hydrogeophysical methods.Journal of Geophysical Research-Biogeosciences, 119, doi:10.1002/2013JG002601.
  12. Mount*, G., Comas, X., and Cunningham, K. 2014. Characterization of the porosity distribution in the upper part of the karst Biscayne aquifer using common offset ground penetrating radar, Everglades National Park, Florida.Journal of Hydrology , 515: 223-236.
  13. Yeboah-Forson*, A, Comas, X., and Whitman, D.2014. Integration of electrical resistivity imaging and ground penetrating radar to investigate solution features in the Biscayne Aquifer. Journal of Hydrology . 515: 129-138.
  14. Pellicer, X., Linares, R., Gutiérrez, F. , Comas, X.,  Roqué, C., Carbonel, D., Zarroca, M., and Rodríguez, A. 2014. Morpho-stratigraphic characterization of a tufa mound complex in the Spanish Pyrenees using ground penetrating radar and trenching, implications for studies in Mars. Earth and Planetary Science Letters, 388: 197-210.
  15. Bon, C. E., Reeve, A. S., Slater, L., and Comas, X. 2014. Using hydrologic measurements to investigate free phase gas ebullition in a Maine Peatland, USA, Hydrol. Earth Syst. Sci., 18, 953-965, doi:10.5194/hess-10-953-2014.
  16. Comas, X., Kettridge, N., Binley, A., Slater, L., Parsekian, A., Baird, A. J., Strack, M., and Waddington, J. M. 2013. The effect of peat structure on the spatial distribution of biogenic gases within bogs. Hydrological Processes, 28 (22), 5483-5494, doi: 10.1002/hyp.10056.
  17. Kettridge, N., Binley, A., Comas X., Cassidy, N., Baird, A., Harris, A., van der Kruk, J., Strack, M., Milner, A., Waddington, J. M. 2012. Do peatland microforms move through time? Examining the developmental history of a patterned peatland using ground penetrating radar. Journal of Geophysical Research-Biogeosciences, 117, G03030, doi:10.1029/2011JG001876.
  18. Comas, X. and Wright*,W. 2012. Heterogeneity of biogenic gas ebullition in subtropical peat soils is revealed using time-lapse cameras, Water Resources Research, 48 , W04601, doi:10.1029/2011WR011654.
  19. Comas, X., Slater, L., and Reeve, A. 2011. Atmospheric Pressure Drives Changes in the Vertical Distribution of Biogenic Free-Phase Gasses in a Northern Peatland. Journal of Geophysical Research-Biogeosciences, 116, G04014, doi:10.1029/2011JG001701.
  20. Parsekian*, A., Comas, X., Slater, L., and Glaser, P. 2011. Geophysical evidence for the lateral distribution of free-phase gas at the peat basin scale in a large northern peatland. Journal of Geophysical Research-Biogeosciences, 116, G03008, doi:10.1029/2010JG001543.
  21. Comas, X., Slater, L., and Reeve, A. 2011. Pool patterning in a northern peatland: geophysical evidence for the role of postglacial landforms. Journal of Hydrology, 399 (3-4): 173-184
  22. Parsekian*, A., Slater, L., Comas, X. and Glaser, P., 2010. Variations in free‐phase gases in peat landforms determined by ground‐penetrating radar, Journal of Geophysical Research -Biogeosciences, 115, G02002, doi:10.1029/2009JG001086.
  23. Kettridge, N., Comas, X., Baird, A., Slater, L., Strack, M., Thompson, D., Jol, H., and Binley A. 2008. Ecohydrologically-important subsurface structures in peatlands are revealed by Ground-Penetrating Radar and resistivity measurements. Journal of Geophysical Research-Biogeosciences, 113, G04030, doi:10.1029/2008JG000787.
  24. Comas, X., Slater L., and Reeve A. 2008. Seasonal geophysical monitoring of biogenic gases in a northern peatland: Implications for temporal and spatial variability in free phase gas production rates, Journal of Geophysical Research-Biogeosciences, 113, G01012, doi:10.1029/2007JG000575.
  25. Slater, L., Comas, X., Ntarlagiannis, D. and Roy Moulik, M., 2007. Resistivity-based monitoring of biogenic gasses in peat soils. Water Resources Research, 43, W10430, doi:10.1029/2007WR006090.
  26. Comas, X. and Slater, L. 2007. Evolution of biogenic gasses in peat blocks inferred from non-invasive dielectric permittivity measurements. Water Resources Research, 43, W05424, doi: 10.1029/2006WR005562.
  27. Comas, X., Slater, L., and Reeve, A., 2007. In situ monitoring of ebullition from a peatland using ground penetrating radar (GPR). Geophysical Research Letters, 34 (6), L06402, doi: 10.1029/2006GL029014.
  28. Comas, X., Slater, L and Reeve, A., 2005. Geophysical and hydrological evaluation of two bog complexes in a Northern Peatland: Implications for the distribution of biogenic gasses at the basin scale. Global Biogeochemical Cycles, 19, GB4023, doi: 10.1029/2005GB002582.
  29. Comas, X., Slater, L. and Reeve, A., 2005. Stratigraphic controls on pool formation in a domed bog inferred from ground penetrating radar (GPR). Journal of Hydrology, 315 (1-4), 40-51.
  30. Comas, X., Slater, L and Reeve, A., 2005. Spatial variability in biogenic gas accumulations in peat soils is revealed by ground penetrating radar (GPR). Geophysical Research Letters, 32 (8), L08401, doi: 10.1029/2004GL022297.
  31. Comas, X. and Slater, L., 2004. Low-frequency electrical properties of peat. Water Resources Research, 40 (12), W12414, doi: 10.1029/2004WR003534.
  32. Comas, X., Slater, L. and Reeve, A., 2004. Geophysical evidence for peat basin morphology and stratigraphic controls on vegetation observed in a northern peatland. Journal of Hydrology, 295, 173-184.


  1. Baird, A., Belyea, L., Comas, X., Reeve, A. and Slater, L., 2009, Carbon Cycling in Northern Peatlands, Geophysical Monograph 184, American Geophysical Union (AGU), Washington DC, 299 pp


  1. Comas, X. 2016. Peat, in Encyclopedia of Estuaries, edited by M. J. Kennish, pp. 476-480, Springer Netherlands, Dordrecht.
  2. Comas, X. and Slater, L, 2009, Non-Invasive Field-Scale Characterization of Gaseous-Phase Methane Dynamics in Peatlands Using the Ground Penetrating Radar (GPR) Method: In, Baird, A., Belyea, L., Comas, X., Reeve, A. and Slater, L., Eds, Carbon Cycling in Northern Peatlands, Geophysical Monograph 184, American Geophysical Union (AGU), 159-172.
  3. Reeve, A, Comas, X. and Slater, L., 2009, The influence of permeable mineral lenses on peatland hydrology In, Baird, A., Belyea, L., Comas, X., Reeve, A. and Slater, L., Eds, Carbon Cycling in Northern Peatlands, , Geophysical Monograph 184, American Geophysical Union (AGU), 289-298.
  4. Baird, A., Comas, X., Slater, L. Belyea, L. and Reeve, A.S., 2009, Understanding Carbon Cycling in Northern Peatlands: Recent Developments and Future Prospects, In, Baird, A., Belyea, L., Comas, X., Reeve, A. and Slater, L., Eds, Carbon Cycling in Northern Peatlands, Geophysical Monograph 184, American Geophysical Union (AGU), p 1-4.
  5. Slater L., and Comas, X., 2009. The contribution of GPR to water resources research. Chapter 7 of Ground Penetrating Radar: Theory and Applications , Edited by H. Jol, Elsevier , 544 pp.


  1. Slater, L., Comas, X., Reeve, A., and Jol, H. 2007. Surveying Hydrology, Ecology, and Climate Effects of Northern Peatlands. Eos Trans. AGU, Vol. 88, No 42, p. 428.