Dr. Caiyun Zhang         

Dr. Caiyun  Zhang

Department of Geosciences
E-mail: czhang3@fau.edu  

Phone: 561-297-2648 
Office: SE-488

Personal Website


Ph.D. in Geospatial Information Sciences (University of Texas at Dallas) 
MS in Marine Geology (Ocean University of China) 
BS in Marine Geology (Ocean University of China) 

Research Interests: 

Hyperspectral and Lidar Remote Sensing
Coastal Vulnerability to Sea Level Rise and Hurricanes
Machine Learning Classification and Modeling
Object-Based Image Analysis


GIS 6127C: Hyperspectral Remote Sensing
GIS 6032C: LiDAR Remote Sensing
GIS 4021C/GEO 6938: Photogrammetry and Aerial Photography Interpretation
GIS 4037C/GIS 5033C: Digital Image Analysis


Zhang, C ., 2020. Multi-sensor System Applications in the Everglades Ecosystem. CRC Press/Taylor and Francis Group, ISBN:1498711774; ISBN-13: 9781498711777; 334 pages.

Recent Publication 

  • Zhang, C.,  D. Brodylo, M. Rahman, M. A. Rahman, T. A. Douglas, and X. Comas, 2022. Using an Object-based Machine Learning Ensemble Approach to Upscale Evapotranspiration Measured from Eddy Covariance Towers in a Subtropical Wetland.  Science of The Total Environment, 831, 154969,  https://doi.org/10.1016/j.scitotenv.2022.154969.
  • Zhang, C., T. A. Douglas, and J. Anderson, 2021. Modeling and Mapping Permafrost Active Layer Thickness using Field Measurements and Remote Sensing Techniques. International Journal of Applied Earth Observations and Geoinformation, 102, 102455. https://doi.org/10.1016/j.jag.2021.102455 (open access)
  • Douglas, T. A., and Zhang, 2021. Machine Learning Analyses of Remote Sensing Measurements Establish Strong Relationships between Vegetation and Snow Depth in the Boreal Forest of Interior Alaska. Environmental Research Letters, 16, 065014.
  • Zhang, C., D. Brodylo, M. J. Sirianni, T. Li, X. Comas, T. Douglas, and G. Starr, 2021. Mapping CO2 Fluxes of Cypress Swamp and Marshes in the Greater Everglades Using Eddy Covariance Measurements and Landsat Data. Remote Sensing of Environment, 262, 112523.
  • Zhang, C., X. Comas, and D. Brodylo, 2020. A Remote Sensing Technique to Upscale Methane Emission Flux in a Subtropical Peatland. Journal of Geophysical Research: Biogeosciences, 125, e2020JG006002, https://doi.org/10.1029/2020JG006002.
  • Zhang, C., H. Su, T. Li, W. Liu, D. Mitsova, S. Nagarajan, R. Teegavarapu, Z. Xie, F. Bloetscher, and Y. Yong, 2020. Modeling and Mapping High Water Table for a Coastal Region in Florida Using Lidar DEM Data. Groundwaterhttps://doi.org/10.1111/gwat.13041.
  • Durgan, S*., C. Zhang, A. Duecaster, F. Fourney, and H. Su, 2020. Unmanned Aircraft System Photogrammetry for Mapping Diverse Vegetation Species in a Heterogeneous Coastal Wetland. Wetlandshttps://doi.org/10.1007/s13157-020-01373-7.
  • Durgan, S*., C. Zhang, and A. Duecaster, 2020. Evaluation and Enhancement of Unmanned Aircraft System Photogrammetric Data Quality for Coastal Wetlands. GIScience & Remote Sensing, https://doi.org/10.1080/15481603.2020.1819720.
  • Zhang, C., 2019. Combining Ikonos and Bathymetric LiDAR Data to Improve Reef Habitat Mapping in the Florida Keys. Papers in Applied Geography, 5, 256-271.
  • Zhang, C., S. Durgan, and D. Lagomasino, 2019. Modeling Risk of Mangroves to Tropical Cyclones: A Case Study of Hurricane Irma. Estuarine, Coastal, and Shelf Science, 224, 108-116.
  • Zhang, C., D. R. Mishra, and S. Pennings, 2019. Mapping Salt Marsh Soil Properties Using Imaging Spectroscopy. ISPRS Journal of Photogrammetry and Remote Sensing, 148, 221-234.
  • Zhang, C., S. Denka, and D. R. Mishra, 2018. Mapping Freshwater Marsh Species in the Wetlands of Lake Okeechobee using Very High-resolution Aerial Photography and Lidar DataInternational Journal of Remote Sensing, 39: 5600-5618.
  • Zhang, C., S. Denka, H. Cooper, and D. R. Mishra, 2018. Quantification of Sawgrass Marsh Aboveground Biomass in the Coastal Everglades Using Object-Based Ensemble Analysis and Landsat Data. Remote Sensing of Environment, 204, 366-379.
  • Zhang, C., M. Smith, and C. Fang, 2018.  Evaluation of Goddard’s LiDAR, Hyperspectral, and Thermal Data Products for Mapping Urban Land-cover Types. GIScience & Remote Sensing, 55, 90-109.
  • Zhang, C., M. Smith, J. Lv, and C. Fang, 2017. Applying Time Series Landsat Data for Vegetation Change Analysis in the Florida Everglades Water Conservation Area 2A during 1996-2016. International Journal of Applied Earth Observations and Geoinformation, 57, 214-223.




Return to Geosciences Home